熱活性炭吸附脫附工藝流程
在工業(yè)生產過程中,排放的有機尾氣通過引風機進入設備的旋轉閥,通過選轉閥將進口氣體和出口氣體完全分開。氣體首先通過陶瓷材料填充層(底層)預熱后發(fā)生熱量的儲備和熱交換,其溫度幾乎達到催化層(中層)進行催化氧化所設定的溫度,這時其中部分污染物氧化分解;廢氣繼續(xù)通過加熱區(qū)(上層,可采用電加熱方式或天然氣加熱方式)升溫,并維持在設定溫度;其再進入催化層完成催化氧化反應,即反應生成CO2和H2O,并釋放大量的熱量,以達到預期的處理效果
1.結構簡單,安全可靠,節(jié)能省力,無二次污染。設備占地面積小,重量輕。
2、采用窩蜂陶瓷狀為載體的貴金屬催化劑,阻力小,活性高。當有機蒸汽濃度達到2000ppm以上時,可維持自燃。 3、耗電量小,由于床層阻力小,用低壓風機就可以工作,耗電少,噪音低。
4、吸附有機物廢氣的活性炭層,用催化燃燒后的廢氣進行脫附再生,吸附后的氣體再送催化燃燒室進行凈化,運行費用低,節(jié)能效果顯著
蓄熱式催化氧化是在催化氧化的基礎上,結合蓄熱式燃燒的有點而研發(fā)的,適用于三苯、酮、酯、醛、酚等各種工業(yè)排放的有機廢氣和異味惡臭氣體。其原理是通過催化氧化的方法將污染物徹底氧化為CO2和H2O,同時利用蓄熱材料反復回用反應產生的熱量,達到減少運行費用的目的。
蓄熱式催化氧化主要結構由燃燒室、陶瓷填料床、催化劑和切換閥等組成:
廢氣經收集后,通過旋轉閥門進入事先蓄熱的蓄熱層,蓄熱層將熱量傳遞給廢氣,廢氣達到反應溫度后,在催化劑層上發(fā)生氧化反應,反應后的氣體通過另外一個蓄熱層,將熱量傳遞給該蓄熱層,氣體得到冷卻,蓄熱層溫度得到升高。到達一定程度的時候,氣體流向發(fā)生反轉,未處理的低溫廢氣進入上一循環(huán)已蓄熱的蓄熱層,然后發(fā)生催化反應后,又將熱量傳遞給上一循環(huán)冷卻的蓄熱層。如此循環(huán)操作,實現(xiàn)污染物的催化氧化反應和熱量的循環(huán)。
蓄熱原理
蓄熱蜂窩陶瓷具有大的熱容(大于1000J/kg?k),大的比表面積(大于1000m2/m3),也具有良好的傳熱性能(導熱系數(shù),大于3w/m*k)。當常溫空氣經過一個蓄熱室內的蓄熱體等時被加熱,在極短時間內常溫空氣被加熱到接近催化反應溫度;與此同時反應后的煙氣經過另一個蓄熱室排入大氣,反應后的高溫熱煙氣通過蓄熱體時將顯熱傳遞給蓄熱體,然后以50-70℃的低溫排出。氣體進出口閥門以一定的頻率進行切換,使蓄熱體處于蓄熱與放熱交替工作狀態(tài),實現(xiàn)熱量的儲存和釋放,達到節(jié)能的效果。
催化燃燒是借助催化劑在低溫(200~400℃)下,實現(xiàn)對有機物的完全氧化,因此,能耗少,操作簡便,安全,凈化效率高,在有機廢氣特別是回收價值不大的有機廢氣凈化方面,比如化工,噴漆、絕緣材料、漆包線、涂料生產等行業(yè)應用較廣。
催化劑定義:催化劑是一種能提高化學反應速率,控制反應方向,在反應前后本身的化學性質不發(fā)生改變的物質。
(2)催化作用機理:催化劑本身參加了反應,使反應改變了原有的途徑,使反應的活化能降低,加速了反應速度。